CS-202 OS Exercises: L1 -L3 26.02.2025

This exercise set covers the concepts discussed in the first two weeks of the course
(Introduction, All about processes, Sharing the CPU). We advise that you work through it
sequentially, referring back to lecture slides or videos as necessary. If anything is unclear, or if
you could benefit from discussing a particular concept in depth, please seek an assistant’s help.

Exercise 1: Process, program, thread

Fill in the blanks using the words process, program, and thread.

A compiler takes a C as input and outputs an assembly or executable

A file may contain a . Double-clicking it (or typing it into the command line) creates
a

A may be stored on disk or in memory. A consists of one or many S
that execute an in-memory copy of the

A associates a unique ID with the memory image and CPU context required to
execute a

Exercise 2: The memory image of a process

Fill in the blanks using the words data, text, stack, and heap.

The and segments have a fixed size, which is known at compile time.

The size of changes with function calls / returns.

The and the grow in opposite directions.

The data in the disappears when the function that created it returns. The data in

the does not.

Exercise 3: CPU state and main memory during execution

Remember that the CPU contains a set of registers, which are small data-holding places that
are close to computational circuits. The CPU loads data from the main memory into registers,
executes operations on in-register data, and writes back from registers to main memory. There
are also special registers that keep track of the current thread’s state. One such register is the
instruction pointer (IP), which stores the address of the next instruction to be executed.

The tables below describe the memory and CPU states for a thread. Draw the tables
corresponding to the next four steps of execution, assuming that no interrupt will be raised.

Memory (address, value):

data:

0x000000f0cacc1a00: 0x0000000000000002

0x000000f0cacclalo: 0x0000000000000005

0x000000f0caccla20: 0x0000000000000f 5

text:

0x00000000c0ffee00: Load 0x000000f0cacc1a00 into r0.

0x00000000cOffeel0: Add 3 to the value in rO, put the result in r1.

0x00000000c0f fee20: If the value in r1 is less than 7, jump to 0x00000000c0ffee50.
0x00000000c0ffees: Jump to 0x00000000c0ffee00.

0x00000000c0f fee50: Store the value in r1 at 0x000000f0cacc1a20.

CPU (register, value):
ro: 0

r1: 0

IP: 0x00000000c0Offeec00

Exercise 4: Variables, stack frames.

Answer the following questions about the C program below.

Clarification: When function f1 calls function f2, f1 must communicate to f2 the value(s) of the

argument(s). In class, we did not discuss where f1 stores the arguments. In principle, they may

be stored in registers or in the stack (though in modern systems, they are mostly stored in
registers). You may assume either approach. Assuming that they are stored in registers makes
the solution simpler, because you do not need to show them in the stack.

int
int

int

int

g = 0;
main () {
g = 1;
foo(2);

foo(int a) {
int 1 = 5;
if (a < 3)
return bar (1) ;
return O;

bar (int 1) {
return g + 1;

1) Draw the memory image of the program at the start of
main(). Which variables are present?

2) Draw the stack just before the first line of foo() is executed.
Show how many stack frames there are, and clearly indicate
where each variable is located.

3) Draw the stack just before the first line of bar() is executed.
Show how many stack frames there are, and clearly indicate
where each variable is located.

Exercise 5: Time-sharing the CPU

Below, you are given two scenarios consisting of the memory image and the CPU context. For
each scenario, identify what code will run next, and what the CPU’s privilege level will be after

the current instruction is executed.

Scenario 1:
heap: r0: 0
0x8badf00d00000000: | 0x0000000000000014 r1: 0
stack: IP: 0x00000000cOffeec00
0x000decafbad00000: | 0x0000000000000150
What code will run next?
data:
0x000000f0caccla00: | 0x0000000000000002 What will the CPU’s privilege
level be?
0x000000f0cacclald: | 0x0000000000000005
0%x000000f0caccla20: | 0x0000000000000FF5
text:
0x00000000c0ffee00: | Syscall.
Scenario 2:
heap: rO: 5
0x8badf00d00000000: | 0x0000000000000014 r1: 0
stack: IP: 0x00000000cOffeecdd
0x000decafbad00000: | 0x0000000000000150
What code will run next?
data:
0x000000f0cacc1a00: | 0x0000000000000002 What will the CPU’s privilege
level be?
0x000000f0cacclal0d: | 0x0000000000000005
0x000000f0cacclal0: | 0x0000000000000F 5
text:
0x00000000CcOffeec00: Divide the value in rO by the value in r1, put the
resultin r1.

Exercise 6: Scheduling states

Consider the following initial state.
There are three single-thread processes. Thread TO belongs to process PO, which is executing
prog0, T1 belongs to P1 executing prog1, and T2 belongs to P2 executing prog2.

After each event, list all threads along with their scheduling status (running, ready, blocked).
Also indicate which program is running (e.g., the kernel - scheduler, the kernel - read syscall
handler, progO0,).

Initial state: TO: running, T1: ready, T2: ready - the CPU is running progQ0.

e T0 makes a read syscall:

e The kernel starts a disk read for TO and schedules T1 in the meantime:

e The kernel receives an interrupt indicating that the disk read is done:

e The kernel schedules TO:

e The CPU receives a timer interrupt set by the scheduler:

e The kernel schedules T2:

e T2 makes a fork syscall:

e The kernel handles the syscall, and schedules the fresh thread T3 belonging to the child
process:

e T3 calls execvp(‘ls”):

e The kernel handles the syscall and returns control back to T3:

Exercise 7: fork,exit,wait

Answer the following questions about the two C programs.

int main() {
int £ = fork();
if (£ == 0) {
foo ()7
}
wait (f);
bar () ;
}
void foo () {
print (“Hello ”);
exit () ;
}
void bar () {

print (“World!”);
}

1) What does this program print?

2) What could the program print if the wait() call was
omitted?

3) What do you think might happen if the exit() call was
omitted?

(Advanced)

int g = 3;
int main() {
int £ = fork();

if (£ == 0) {
foo () ;
}
wait (f);
print (“World”) ;
exit () ;
}
void foo () {
// g-=; // (1)

if (g > 0) {

int £ = fork();

if (£ == 0) {
foo () ;

}

//g-=; // (2)

wait (f);

exit ();

print (“Hello ”);

1) This program does not terminate. Explain why and
identify what the program will print.

2) If we uncommented the line marked with // (1), would
the program terminate? If so, what would it print?

3) If we uncommented the line marked with // (2), would
the program terminate? If so, what would it print?

Exercise 8 (Advanced): Guessing how threads work

In the C program below, spawn_thread(foo, 4) creates a thread within the same process, which

starts executing foo with argument 4. We have mentioned threads in class but not said exactly

how they work. For this exercise, we would like you to make an informed guess. You are
welcome and encouraged to discuss your guess — and your doubts — with the TAs.

int g = 0;

int main() {
g=1;
spawn_thread (foo,
foo (4);

int foo(int a) {
int 1 = 5;
if (a < 3)
return bar (1) ;
return O;

int bar(int 1) {
return g + 1;

2);

1) Draw the memory image of the program just after the
call to spawn_thread. How many copies of ‘1’ are there?
How many copies of ‘g’7

2) Assume that the original thread returns from foo() at
the same time the new thread returns from bar(). Draw
the memory image of the process just before they both
return.

	CS-202 OS Exercises: L1 - L3 26.02.2025
	Exercise 1: Process, program, thread
	Exercise 2: The memory image of a process
	
	Exercise 3: CPU state and main memory during execution
	
	Exercise 4: Variables, stack frames.
	Exercise 5: Time-sharing the CPU
	Exercise 6: Scheduling states
	Exercise 7: fork,exit,wait
	Exercise 8 (Advanced): Guessing how threads work

